An implicit WENO scheme for steady-state computation of scalar hyperbolic equations

نویسندگان

  • Sigal Gottlieb
  • Julia S. Mullen
چکیده

Weighted essentially non-oscillatory (WENO) schemes have proved useful in a variety of physical applications. They capture sharp gradients without smearing, and feature high order of accuracy along with nonlinear stability. The high order of accuracy, robustness, and smooth numerical uxes of the WENO schemes make them ideal for use with Jacobian based iterative solvers, to directly simulate the steady state solution of conservation laws. In this paper, we consider a Newton based implicit WENO solver for scalar conservation laws. A unique interpolation technique is developed, which produces a more eÆcient iteration. Numerical results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fifth Order Flux Implicit WENO Method

The weighted essentially non-oscillatory method (WENO) is an excellent spatial discretization for hyperbolic partial differential equations with discontinuous solutions. However, the time-step restriction associated with explicit methods may pose severe limitations on their use in applications requiring large scale computations. An efficient implicit WENO method is necessary. In this paper, we ...

متن کامل

Lax-Friedrichs Multigrid Fast Sweeping Methods for Steady State Problems for Hyperbolic Conservation Laws

Fast sweeping methods are efficient Gauss–Seidel iterative numerical schemes originally designed for solving static Hamilton–Jacobi equations. Recently, these methods have been applied to solve hyperbolic conservation laws with source terms. In this paper, we propose Lax–Friedrichs fast sweeping multigrid methods which allow even more efficient calculations of viscosity solutions of stationary ...

متن کامل

Implicit Total Variation Diminishing (TVD) Schemes for Steady-State Calculations

We examine the application of a new implicit unconditionallystable high-resolution TVD scheme to steady-state calculations. It is a member of a one-parameter family of explicit and implicit second-order accurate schemes developed by Harten for the computation of weak solutions of one-dimensional hyperbolic conservation laws. This scheme is guaranteed not to generate spurious oscillations for a ...

متن کامل

High order residual distribution conservative finite difference WENO schemes for steady state problems on non-smooth meshes

In this paper, we propose a high order residual distribution conservative finite difference scheme for solving steady state hyperbolic conservation laws on non-smooth Cartesian or other structured curvilinear meshes. WENO (weighted essentially non-oscillatory) integration is used to compute the numerical fluxes based on the point values of the solution, and the principles of residual distributi...

متن کامل

High order fixed-point sweeping WENO methods for steady state of hyperbolic conservation laws and its convergence study

Fixed-point iterative sweeping methods were developed in the literature to efficiently solve static Hamilton-Jacobi equations. This class of methods utilizes the Gauss-Seidel iterations and alternating sweeping strategy to achieve fast convergence rate. They take advantage of the properties of hyperbolic partial differential equations (PDEs) and try to cover a family of characteristics of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002